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1. Introduction

Modern developments in efforts to consistently combine gravity and quantum mechanics

have indicated that quantum field theory has too many degrees of freedom. The entropy

of a geometrical object seems to depend on the area of a boundary surface. In the case

of a black hole, thermodynamic arguments suggest that its entropy is proportional to the

area of its event horizon. This expectation has been confirmed on the microscopic side by

calculations for some special cases of black holes.

The separation of a system into two subsystems gives rise to the notion of the entangle-

ment entropy which quantifies the quantum correlations between the two subsystems. One

can take the subsystems to be two regions of space separated by a boundary surface. Early

calculations in quantum field theories indicated that the entanglement entropy between the

degrees of freedom in two regions separated by a boundary surface is proportional to the

area of the boundary surface [1 – 4]. These developments have led to the intuition that the

entanglement entropy is dominated by degrees of freedom close to the boundary surface,

so it is natural to expect that the entanglement entropy is proportional to the area. The

connection between the entropy of a geometric system, on the one hand, and the entan-

glement entropy between the quantum field theory degrees of freedom between spatially

disconnected regions, on the other hand, is not clear. There have even been suggestions

that the black hole entropy is entirely entanglement entropy [5]. This suggests the possi-

bility that when the boundary surface is taken to be an event horizon, the two types of

entropy are identical or at least related. Therefore it becomes important to examine the

properties of entanglement entropy in more general cases and attempt to understand its

properties when the entanglement involves regions separated by a horizon.
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The entanglement entropy is ultraviolet divergent and must be regularized. Presum-

ably a more fundamental theory at the Planck scale will provide the mechanism that

eliminates the divergence. Since we are not yet aware of how the underlying theory regu-

larizes the divergence, we are forced to do so by hand in calculations. The regularization

involves the Planck scale and the expectation that entanglement entropy may be connected

to the theory of quantum gravity is suggested by simple dimensional analysis. If indeed

the entanglement entropy is proportional to the area of the boundary surface in Planck

units, then the connection to a holographic principle similar to the one suggested by the

AdS/CFT correspondence [6 – 10], may apply to the entanglement entropy.

After the initial studies of the entanglement entropy [1 – 4], most research in the sub-

ject has been devoted to CFTs. When a field theory is conformal, there are additional

tools to compute the entanglement entropy, which, in fact, is proportional to the central

charge [11]. Even when the CFT is modified by adding mass deformations [11 – 13], the

same property holds. Also, recent calculations of entanglement entropy in this context

suggest a holographic interpretation [14, 15]. The connection between the entanglement

entropy and holography has also been discussed in more general contexts [16, 17]. Scal-

ing of the entaglement entropy with the area of the boundary have also been verified by

numerical computations [18, 19].

In this paper, we investigate the entanglement entropy of a quantum field theory in the

case of an arbitrary boundary surface embedded in a background with spatial curvature.

Our results contain many previously derived results as special cases, but are more general

because we consider arbitrary geometries. Ultimately one would want to consider the even

more general case involving spacetime curvature, so the comparison with other forms of

entropy can be made explicit.

2. Entanglement entropy

In this section, we compute the entanglement entropy by using two main tools, the replica

method and the heat kernel method.

In the replica method (see, for example, ref. [3]), the entropy is expressed as the limit

k → 1 of an expression involving the kth power of the (reduced) density matrix. Expressing

the density matrix as a path integral, we are lead to consider the manifold which is the

result of gluing k copies of the original manifold. This gives an expression of the entropy

in terms of the path integral over closed curves in the glued manifold, which is described

in the subsection 2.1.

For a free scalar field on an arbitrary base manifold, the resulting path integral is

expressed in terms of the spectral quantities of a differential operator. It is convenient to

study these quantities by the heat kernel method. We use it in the subsection 2.2 to obtain

an expression for the entropy in which the dependence on the hypersurface is factored out.

This leads to several properties of the entropy which we derive in the subsection 2.3.

In particular, we compute the entropy for a hypersurface which is a direct product of

manifolds, prove the addititivity property of the entropy, and compute the leading terms

of asymptotic expansions of the entropy.

– 2 –
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In the heat kernel method (see, for example, refs. [20, 21]), the spectral information

is obtained from an asymptotic expansion of the trace of the heat kernel of the operator.

All terms in the expansion are determined by the geometry of the underlying manifold.

Although they can be computed in principle, the computations are quite complicated in

practice. The parameters in the resulting asymptotic expansion are an ultraviolet cutoff

scale and geometric scales associated with the manifold. In the subsection 2.4, this leads

to an asymptotic expansion for the entropy, which involves geometric quantities associated

with the hypersurface. We show that the term proportional to the volume of the manifold

is absent and the leading term is proportional to the volume of the hypersurface.

2.1 Replica method

We consider a field theory on a generally curved space which is divided by an arbitrary

hypersurface into two parts. The quantum fields in the two parts are entangled, and

our goal is the calculation of the entanglement entropy. Let M be an n − 1 dimensional

Riemannian manifold without a boundary and let Σ ⊂ M be a closed hypersurface (a

submanifold of codimension 1). Σ divides M into two parts, the interior part M ′ and the

exterior part M ′′. Let φ be a field on M , and (φ′, φ′′) its restrictions to (M ′,M ′′), and

let ψ(φ′, φ′′) be a wave function corresponding to the field having the value (φ′, φ′′) on

(M ′,M ′′). The density matrix for (φ′, φ′′) is

ρ(φ′1, φ
′′
1 , φ

′
2, φ

′′
2) = ψ(φ′1, φ

′′
1)ψ(φ′2, φ

′′
2), (2.1)

and the reduced density matrix for φ′ is obtained by tracing over the degrees of freedom

of the field on M ′′,

ρ′(φ′1, φ
′
2) =

∫

dφ′′ ρ(φ′1, φ
′′, φ′2, φ

′′). (2.2)

The reduced density matrix ρ′ represents the mixed state with the associated entropy

S′ = − tr

(

ρ′

tr ρ′
log

ρ′

tr ρ′

)

= lim
k→1

(

1 −
∂

∂k

)

log tr ρ′k. (2.3)

The quantity tr ρ′ =
∫

dφ′ ρ′(φ′, φ′) in the denominator guarantees the correct normaliza-

tion for the density matrix. The second equality embodies the replica method (see, for

example, ref. [3]).

In order to obtain the path integral representation for the kth power of the density

matrix we introduce an auxiliary field ϕ(τ, x) defined on N = R ×M and which satisfies

the boundary condition ϕ(0, x) = φ0(x). The parameter τ represents Euclidean time. Let

I(ϕ) be an action for the field ϕ. The wave function is ψ(φ) = Z(N,φ0, φ), where

Z(N,φ0, φ) =

∫

C(N,φ0,φ)
dϕ exp

(

−I(ϕ)
)

(2.4)

is a path integral over the space C(N,φ0, φ) of curves defined on N and which satisfy

boundary conditions ϕ(0, x) = φ0(x) and ϕ(T, x) = φ(x) for some T ∈ R. Using T = −∞

for ψ(φ′1, φ
′′) and T = ∞ for ψ(φ′2, φ

′′), we find

ρ′(φ′1, φ
′
2) = Z(N,φ′1, φ

′
2). (2.5)

– 3 –
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τ = 0+

τ = 0−

R ×M(1) R ×M(2) R ×M(k)

Figure 1: The replica method involves cutting the original manifold N along {τ = 0} ×M ′ and

gluing k such cut copies of N along {τ = 0} ×M ′ to form the manifold Nk with k sheets. We

identify {τi = 0−} ×M ′

(i) with {τi+1 = 0+} ×M ′

(i+1) for i = 1, . . . , k − 1, and {τk = 0−} ×M ′

(k)

with {τ1 = 0+}×M ′

(1). When M = R and Σ is a point P , the construction gives the 2-dimensional

cone manifold Ck = R
+ ×S1

k
, where S1

k
is the unit circle S1 which is parametrized by 0 ≤ θ ≤ 2πk.

The quantity 2π(1 − k) is called the deficit angle. Note that Ck is the Riemann surface of the

holomorphic function z 7→ zk.

The function ϕ(τ, x) has a discontinuity at τ = 0 since ϕ(0−, x) = φ′1(x) and ϕ(0+, x) =

φ′2(x). However, ϕ(τ, x) is continuous on the manifold Ñ1, which is defined as the manifold

N with the cut along {τ = 0} ×M ′.

The kth power of the density matrix is

ρ′k(φ′1, φ
′
k+1) =

∫

dφ′2dφ
′
3 · · · dφ

′
k ρ

′(φ′1, φ
′
2)ρ

′(φ′2, φ
′
3) · · · ρ

′(φ′k, φ
′
k+1). (2.6)

Let R × M(1), . . . ,R × M(k) be k copies of R × M . By cutting every R × M(i) along

{τi = 0} ×M ′
(i) and gluing them in such a way that {τi = 0−} ×M ′

(i) is identified with

{τi+1 = 0+} ×M ′
(i+1) for i = 1, . . . , k − 1, we obtain the manifold Ñk. See figure 1. This

gives

ρ′k(φ′1, φ
′
k+1) = Z(Ñk, φ

′
1, φ

′
k+1). (2.7)

Identifying {τk = 0−}×M ′
(k) with {τ1 = 0+}×M ′

(1), we obtain the manifold Nk. This gives

tr ρ′k = Z(Nk) =

∫

C(Nk)
dϕ exp

(

−I(ϕ)
)

, (2.8)

which is a path integral over all closed curves in Nk. This quantity gives the entanglement

entropy for ρ′ via eq. (2.3). If instead we were to trace the density matrix over the degrees

of freedom in M ′, we would obtained the reduced density matrix ρ′′ for φ′′. It is easy

to show that the entanglement entropy for ρ′′ is the same, S′ = S′′, and we denote the

common value by SΣ to emphasize its dependence on the surface Σ.

2.2 Heat kernel

To proceed with an explicit computation, we choose the free scalar field with the action

I(ϕ) = 2−1

∫

N
ωNϕDNϕ, (2.9)

where DN = ∆N +m2, ∆N is the scalar Laplace operator for N , ωN is the volume form

for N , and m is the mass of the field ϕ. Performing a Gaussian integral, we find

Z(Nk) = Zk
0 (detDNk

)−1/2, (2.10)

– 4 –
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where Z0 is a constant independent of k. Since DNk
is a non-negative elliptic operator, we

can define its determinant by

log detDNk
− log detENk

= −

∫ ∞

0
dt t−1

(

tr exp (−tDNk
) − tr exp (−tENk

)
)

, (2.11)

where ENk
is any other non-negative elliptic operator on Nk. (To prove this equation,

one writes the analogous equation relating eigenvalues of DNk
and ENk

.) The quantity

exp (−tDNk
) is called the heat kernel of the operator DNk

, and

K(t,DNk
) = tr exp (−tDNk

) (2.12)

is its L2 trace. We find K(t,DNk
) = exp (−tm2)K(t,∆Nk

).

The integral over t in eq. (2.11) diverges for small t. To obtain a finite result, we replace

the lower limit of integration over t by a regularization parameter λ2 (an ultraviolet cutoff),
∫ ∞

λ2

dt t−1K(t,DNk
) = tr Γ(0, λ2DNk

). (2.13)

Here Γ is the incomplete Gamma function which is given either by the integral represen-

tation

Γ(α, z) =

∫ ∞

z
duuα−1 exp (−u) (2.14)

or by the series representation

Γ(α, z) = Γ(α) − zα
∞
∑

j=0

(−z)j

(α+ j)j!
, α 6= 0,−1,−2, . . . , (2.15)

Γ(−l, z) =
(−1)l

l!
(ψ(l + 1) − log z) − z−l

∞
∑

j=0
j 6=l

(−z)j

(−l + j)j!
, l = 0, 1, 2, . . . , (2.16)

where ψ(l + 1) = −γ +
∑l

j=1 j
−1 and γ is the Euler constant. We will later need the

incomplete Gamma function for nonzero values of α as well.

We choose ENk
to be a unit operator times a constant with the dimension of inverse

length squared; this leads to vanishing of its contribution to the entropy. Similarly, the

contribution from the constant Zk
0 vanishes. The regularized entropy becomes

SΣ(λ) = 2−1 lim
k→1

(

1 −
∂

∂k

)

tr Γ(0, λ2DNk
). (2.17)

We can factor the dependence of SΣ(λ) on Σ proceeding as follows. Locally, Nk =

Ck ×Σ, where Ck = R
+ × S1

k is the 2-dimensional cone manifold, and S1
k is the unit circle

S1 which is parametrized by 0 ≤ θ ≤ 2πk. The quantity 2π(1 − k) is called the deficit

angle. Note that Ck is the Riemann surface of the holomorphic function z 7→ zk. Giving

Nk a product metric, we find

∆Nk
= ∆Ck

⊗ 1Σ + 1Ck
⊗ ∆Σ, (2.18)

– 5 –



J
H
E
P
0
7
(
2
0
0
8
)
0
9
5

which gives

K(t,∆Nk
) = K(t,∆Ck

)K(t,∆Σ). (2.19)

This factorization reveals the special role played by the entropy for a point P , whenM = R,

Σ = P ,

SP (λ) = 2−1

∫ ∞

λ2

dt t−1 exp (−tm2)C(t), (2.20)

where

C(t) = lim
k→1

(

1 −
∂

∂k

)

K(t,∆Ck
). (2.21)

A simple computation gives the expression

SΣ(λ) = −

∫ ∞

λ
dµ

∂SP (µ)

∂µ
K(µ2,∆Σ), (2.22)

in which the dependence on Σ is factored out. This equation leads to several properties of

the entropy, which we now derive.

2.3 Several properties of entropy

1. Let (r, θ) be local polar coordinates for Ck, and ξ > 0. Under the scaling transfor-

mation (t, r, θ) 7→ (ξ2t, ξr, θ), we have Ck 7→ Ck, t∆Ck
7→ t∆Ck

, and so K(t,∆Ck
) 7→

K(t,∆Ck
). This implies C(t) = C = const and thus

SP (λ) = 2−1CΓ(0, λ2m2). (2.23)

We will compute C in the next subsection and the appendix.

2. Let (τ = x1, x2) be local coordinates for Ck, let (x3, . . . , xn) be local coordinates for

Σ, and let ξ > 0. Under the transformation λ 7→ ξλ, xj 7→ ξxj, j = 3, . . . , n, we have

∆Σ 7→ ∆Σ,ξ = ξ−2∆Σ and SΣ(λ) 7→ SΣ,ξ(ξλ), where

SΣ,ξ(ξλ) = −

∫ ∞

ξλ
dµ

∂SP (µ)

∂µ

(

∂SP (ξ−1µ)

∂(ξ−1µ)

)−1∂SΣ(ξ−1µ)

∂(ξ−1µ)
. (2.24)

Using eq. (2.23), we find

SΣ,ξ(ξλ) = −

∫ ∞

λ
dν exp

(

−(ξ2 − 1)ν2m2
)∂SΣ(ν)

∂ν
. (2.25)

It follows that limξ→0(∂SΣ,ξ(ξλ)/∂ξ) = 0. Since vol (Σ) 7→ ξn−2 vol (Σ), this implies

SΣ(λ) ∼ C ′λ2−n vol (Σ), λ→ 0, (2.26)

where C ′ = const.

– 6 –
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Figure 2: The hypersurfaces used in the formulation of the additivity property.

3. Since 0 is the smallest eigenvalue of ∆Σ, we have K(t,∆Σ) ∼ 1, t→ ∞. This gives

SΣ(λ) ∼ 2−1CΓ(0, λ2m2), λ→ ∞. (2.27)

Interestingly, this coincides with the expression in eq. (2.23) for SP (λ) for arbitrary λ.

This can be understood as the result of the physical scales of Σ becoming irrelevant

as the cutoff λ tends to infinity.

4. Let Σ1 and Σ2 be closed hypersurfaces in M . Let ∂ and ∂−1 be operators defined by

∂M ′
i = Σi and ∂−1Σi = M ′

i , where M ′
i is a part of M inside Σi for i = 1, 2. Being an

integral over Σ, the quantity K(t,∆Σ) is linear in Σ. It follows that

K(t,∆Σ1
) +K(t,∆Σ2

) = K(t,∆∂(∂−1Σ1∪∂−1Σ2)) +K(t,∆∂(∂−1Σ1∩∂−1Σ2)), (2.28)

and thus the entropy satisfies the additivity property

SΣ1
(λ) + SΣ2

(λ) = S∂(∂−1Σ1∪∂−1Σ2)(λ) + S∂(∂−1Σ1∩∂−1Σ2)(λ). (2.29)

See figure 2. For an arbitrary system, the entanglement entropy satisfies the strong

subadditivity property, which requires ‘≥’ instead of ‘=’ in eq. (2.29).

2.4 Asymptotics

We now derive the asymptotic expansion of SΣ(λ) for λ→ 0. It is clear that this requires

knowledge of the asymptotic behavior ofK(t,∆Σ) for t→ 0. For an n-dimensional manifold

L, such an asymptotic is given by

K(t,∆L) ∼
∞
∑

l=0

t(l−n)/2al(∆L), t → 0, (2.30)

where

al(∆L) =

∫

L
ωLal(xL,∆L), (2.31)

and al(xL,∆L) are the heat kernel coefficients for ∆L. The above factorization ofK(t,∆Nk
)

leads to

al(xNk
,∆Nk

) =

l
∑

j=0

aj(xCk
,∆Ck

)al−j(xΣ,∆Σ). (2.32)

– 7 –
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The coefficients al(xL,∆L) are completely determined by the geometry of L. For

a manifold without boundary, al(xL,∆L) = 0 for odd l. All coefficients al(xL,∆L) are

polynomials in the covariant derivatives of the Riemann tensor (RL)abcd, the Ricci tensor

(RL)ab, and the scalar curvature RL of L. Explicit expressions for several first coefficients

are available in the literature (see, for example, ref. [20]). For example,

a0(xL,∆L) =(4π)−n/2, (2.33)

a2(xL,∆L) =(4π)−n/26−1RL, (2.34)

a4(xL,∆L) =(4π)−n/2360−1

(

−12∆LRL + 5R2
L − 2

∑

a,b

(RL)ab(RL)ab

+ 2
∑

a,b,c,d

(RL)abcd(RL)abcd

)

. (2.35)

It has been shown [22] that the only nonzero heat kernel coefficients for Ck are

a0(xCk
,∆Ck

) = (4π)−1, (2.36)

a2(xCk
,∆Ck

) = (4π)−16−14π(1 − k)δCk
, (2.37)

where δCk
is the delta function at the origin of Ck. This gives C = 6−1. (In the appendix,

we derive this result.) The regularized entropy becomes

SP (λ) = 12−1Γ(0, λ2m2), (2.38)

SΣ(λ) = 12−1 tr Γ(0, λ2DΣ). (2.39)

In terms of the integrated heat kernel coefficients of Σ, we find

SΣ(λ) ∼ 12−1
∞
∑

l=0

mn−l−2Γ
(

(2 + l − n)/2, (λm)2
)

al(∆Σ), λ→ 0. (2.40)

This asymptotic expansion is our main result. For λ → 0, SΣ(λ) depends only on the

spectral properties of the operator λ2DΣ. Equivalently, the entropy depends only on pa-

rameters m, λ, and on geometric invariants associated with Σ. The asymptotic expansion

for SΣ(λ) involves log λm and the powers of λm. The leading term in the entropy is

SP (λ) ∼ 12−1
(

−2 log λm− γ
)

, λ→ 0, (2.41)

SΣ(λ) ∼ 12−1(n/2 − 1)−1λ2−n(4π)1−n/2 vol (Σ), λ→ 0. (2.42)

The term of order λ−n vol (N) in SΣ(λ) is absent; it would be the extensive contribution

to the entropy.

We remark on the case n = 2. (See also ref. [15] for a similar discussion.) The entangle-

ment entropy for a critical 2-dimensional CFT with the central charge c is asymptotically

S ∼ (c/3) log (ℓ/λ), where ℓ is the size of the system [11]. For a massive theory with the

correlation length ξ, the entropy becomes S ∼ (c/6)ν log (ξ/λ) for ℓ ≫ ξ, where ν is the

number of components of (zero dimensional) Σ. Setting c = 1, ν = 1, ξ ∼ m−1, we recover

eq. (2.41).

– 8 –
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3. Conclusion

We have calculated the asymptotic expansion of the entanglement entropy for a free scalar

field in arbitrary background geometry. The expansion parameter is the ultraviolet cutoff λ

which is needed to regularize the entropy. We have found that the entropy depends only on

geometric invariants associated with the boundary surface Σ. The extensive contribution

to the entropy, the term of order λ−n vol (N), is absent. The leading term is proportional

to λ2−n vol (Σ).

We have considered a situation with spatial curvature only and with time included

in only a trivial way as a product. Our calculation does not utilize a spacetime that is a

solution of Einstein’s equations. Further research may involve extending this calculation to

cases involving spacetime curvature. Another interesting direction to pursue is to include

interactions since this, at least intuitively, can potentially change the area dependence of

the entropy. The studies of interactions have been mostly limited to CFTs, but their role

in QFT remains largely unexplored. These cases involve gravity more explicitly and may

make a connection between holographic entropy and entanglement entropy more obvious.
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A. Heat kernel coefficients for the cone

Here we compute the heat kernel coefficients for the cone Ck. Let ξ > 0. Under the trans-

formation (t, r, θ) 7→ (ξ2t, ξr, θ), we have K(t,∆Ck
) 7→ K(t,∆Ck

), al(∆Ck
) 7→ ξ2−lal(∆Ck

).

Since Ck does not have a length scale associated with it, this implies a0(∆Ck
) = ∞,

a2(∆Ck
) = const, al(∆Ck

) = 0, l ≥ 4. a0(xCk
,∆Ck

) is given by eq. (2.33), and to compute

a2(xCk
,∆Ck

) from eq. (2.34), we need to know the scalar curvature of Ck, with computation

of which we now proceed.

Ck is singular at r = 0 if k 6= 1. We consider it as a limit Ck = limε→0Ck,ε, where Ck,ε

is a regular manifold. On Ck,ε we take an orthonormal frame (ω1, ω2) = (fdr, rdθ), where

the regularization function f(k, r, ε) is an arbitrary smooth function satisfying conditions

limr→0 f = k, limε→0 f = 1. An example of such a function is f =
(

k2 + (1 − k2)(qr)ε
)1/2

,

where ε ≥ 0 and q > 0 is an arbitrary constant with the dimension of inverse length. In

what follows, we proceed with arbitrary f satisfying the above conditions.

Let ω and Ω be the 2 × 2 antisymmetric matrices of connection and curvature forms.

Cartan’s equations for Ck,ε,

ω1
2 ∧ rdθ = 0, (A.1)

dr ∧ dθ + ω2
1 ∧ fdr = 0, (A.2)

dω1
2 = Ω1

2, (A.3)
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have the solution

ω1
2 = −f−1dθ, (A.4)

Ω1
2 = rfgdr ∧ dθ, (A.5)

where g = r−1f−3(∂f/∂r). The nonzero components of the Ricci tensor are (RCk,ε
)11 =

(RCk,ε
)22 = g, and the scalar curvature is RCk,ε

= 2g.

To obtain non-regularized quantities, we consider the limit ε→ 0. Using limr→0 f = k,

limε→0 f = 1, ωCk,ε
= rfdr∧dθ, for an arbitrary function h(r) satisfying h(∞) = 0, we find

lim
ε→0

∫

Ck,ε

ωCk,ε
gh = 2πk lim

ε→0

(

−f−1h
∣

∣

r=∞

r=0
+

∫ ∞

0
dr f−1(∂h/∂r)

)

= 2π(1 − k)h(0). (A.6)

This implies limε→0 g = 2π(1 − k)δCk
, where δCk

is the delta function at the origin of Ck.

Thus, RCk
= 4π(1 − k)δCk

, the only nonzero heat kernel coefficients for Ck are

a0(xCk
,∆Ck

) = (4π)−1, (A.7)

a2(xCk
,∆Ck

) = (4π)−16−14π(1 − k)δCk
, (A.8)

so that we may identify C = 6−1. Alternatively, since C(t) in eq. (2.21) is a constant, we

can compute it by taking the limit t→ 0 in the expansion

C(t) ∼ lim
k→1

(

1 −
∂

∂k

) ∞
∑

l=0

t(l−2)/2al(∆Ck
), t→ 0. (A.9)

Since the coefficients a0(xCk
,∆Ck

), al(xCk
,∆Ck

), l ≥ 4 do not contribute to C, we find

C = 6−1.
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